django-xworkflows Documentation
Release 0.8.1

Raphaél Barrois

November 07, 2015

Contents

1 Getting started 3
2 Integration with django 5
3 Contents 7

3.1 Libraryinternals e e e e e e e e 7

3.2 Changelog e 11
4 Resources 15
5 Indices and tables 17

Python Module Index 19

django-xworkflows Documentation, Release 0.8.1

django-xworkflows is a django application adding xworkflows functionnalities to django models.

Contents 1

http://github.com/rbarrois/xworkflows/

django-xworkflows Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Getting started

First, install the required packages:

pip install django-xworkflows

In your settings.py, add django_xworkflows to your INSTALLED_APPS:

INSTALLED_APPS = (

1 v
e e e g

'django_xworkflows',

Define a workflow:

from django_xworkflows import models as xwf_models

class MyWorkflow (xwf_models.Workflow) :

log_model = "' # Disable logging to database
states = (
('new', _(u"New")),
('old', _(u"old")),
)
transitions = (
('get_old', 'new', 'old'"),
)
initial_state = 'new'

And add it to a model:

from django import models
from django_xworkflows import models as xwf_models

class MyModel (xwf_models.WorkflowEnabled, models.Model) :

state = xwf_models.StateField (MyWorkflow)

The state field of MyModel is now defined as a django.db.models.CharField, whose choices and
default are configured according to the related d jango_xworkflows.models.Workflow.

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField

django-xworkflows Documentation, Release 0.8.1

4 Chapter 1. Getting started

CHAPTER 2

Integration with django

After each successful transition, a save () is performed on the object. This behaviour is controlled by passing the
extra argument save=False when calling the transition method.

If the Workf1ow has a definition for the 10g_mode 1 attribute (as a <app>.<Model> string), an instance of that
model will be created for each successful transition.

If the django_xworkflows.xworkflow_log application is installed, Iog _model defaults to
TransitionLog. Otherwise, it defaults to / * (db logging disabled).

This behaviour can be altered by:
* Setting the 1og_model attribute to ” *
* Calling the transition method with 1log=False (no logging to database)
* Overriding the db_ 1og () method of the Workflow.

e Overriding the log_transition () method of the Workflow; this controls both 1og and save be-
haviours.

django-xworkflows Documentation, Release 0.8.1

6 Chapter 2. Integration with django

CHAPTER 3

Contents

3.1 Library internals

This page documents the internal mechanisms of django_xworkflows.

3.1.1 Binding to a workflow

The mechanism to bind a django model to a xworkflows.Workflow relies on the WorkflowEnabled and
StateField classes.

class django_xworkflows.models.StateField (django.db.models.Field)
This class is a simple Django Field, specifically tuned for a Workf1ow.

It is internally backed by a CharField containing the name of the state.

Reading the value always returns a xworkflows.base.StateWrapper, writing checks that the value is a
valid state or a valid state name.

workflow
Mandatory; holds the Workf1ow to which this StateField relates

choices
The workflow states, as a list of (name, title) tuples, for use in forms.

default
The name of the inital state of the workflow

max_length
The length of the longest state name in the workflow.

blank
Such a field cannot be blanked (otherwise, the workflow wouldn’t have a meaning).

null
Since the field cannot be empty, is cannot be null either.

south_field_triple (self)
Returns the south description of this field. When unfreezing, a fake Work f1ow will be retrieved with the
same states and initial_state as present at freezing time.

This allows reading states that no longer exist in the workflow.

class django_xworkflows.models.WorkflowEnabled (models.Model)
This class inherits from Django’s Mode 1 class, performing some transformations on the subclass: each attr

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field
http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model

django-xworkflows Documentation, Release 0.8.1

= StateField(SomeWorkflow, ...) attribute will enable XWorkflows’ transition detection and wrap-
ping.
Most of this job is performed through Work flowEnabledMeta.

_get_FIELD_display (self, field)
This method overrides the default django one to retrieve the title froma StateField field.

3.1.2 Transitions

Transitions mostly follow XWorkflows’ mechanism.

class django_xworkflows.models.TransactionalImplementationWrapper (xworkflows.base.ImplementationWrapp
This specific wrapper runs all transition-related code, including hooks, in a single database transaction.

The TransactionallmplementationWrapper can be enabled by setting it to the
implementation_class attribute of a xworkflows.Workflow or of a Workflow:

class MyWorkflow (models.Workflow) :
implementation_class = models.TransactionalImplementationWrapper

class django_xworkflows.models.Workflow (xworkflows.Workflow)
This xworkflows.Workflow subclass performs a few customization:

*Logging transition logs in database
*Saving updated objects after the transition

log_model
This holds the name of the model to use to log to the database. If empty, no database logging is performed.

log_model_class
This holds the class of the model to use to log to the database.

Takes precedence over 1og_mode 1. If this attribute is empty but 1og_mode1 has been provided, it will
be filled at first access.

db_log (self, transition, from_state, instance, *args, **kwargs)
Logs the transition into the database, saving the following elements:

*Name of the transition

*Name of the initial state

*GenericForeignKey to the modified instance
*ForeignKey to the user responsible for the transition
timestamp of the operation

The default TransitionLogmodelis django xworkflows.xworkflow log.models.TransitionLog,
but an alternative one can be specified in 1og_model or 1og_model_class.

Hint: Override this method to log to a custom TransitionLog with complex fields and storage.

log_transition (self, transition, from_state, instance, save=True, log=True, *args, **kwargs)
In addition to xworkflows.Workflow.log_transition (), additional actions are performed:

°If save is True, the instance is saved.

°If logis True, the db_Ilog () method is called to register the transition in the database.

8 Chapter 3. Contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey

django-xworkflows Documentation, Release 0.8.1

3.1.3 Transition logs

Transition logs can be stored in the database. This is performed by the db_1og () method of the Workf1ow class.
The default method will save informations about the transition into an adapted model. The actual model to log will be:
¢ The model whose class is set to the Workflow. log model_class attribute

¢ The model whose name (in an app_label.ModelClass format) is set to the Workflow. log model
attribute

e The django_xworkflows.xworkflow log.models.TransitionLog model if
django_xworkflows.xworkflow_log belongsto settings.INSTALLED_APPS

* Nothing if none of the above match

Such models are expected to have a few fields, a good basis for writing your own is to inherit from ei-
ther BaseTransitionLog or GenericTransitionLog (which provides a default storage through a
GenericForeignKey).

The BaseTransitionLog class provides all required fields for logging a transition.

class django_xworkflows.models.BaseTransitionLog (models.Model)
This class provides minimal functions for logging a transition to the database.

transition
This attribute holds the name of the performed transition, as a string.

from_state
Name of the source state, as a string.

to_state
Name of the target state, as a string.

timestamp
Timestamp of the operation, as a DateTimeField.

MODIFIED_ OBJECT_FIELD

Name of the field where the modified instance should be passed. Logging the transition will likely fail if
this is not provided.

EXTRA LOG_ATTRIBUTES

It may be useful to log extra transition kwarg (user, ...) to the database. This attribute describes how to
log those extra keyword arguments.

It takes the form of a list of 3-tuples (db_field, kwarg, default). Whenlogging to the database,
the db_ field attribute of the BaseTransitionLog instance will be filled with the keyword argument
passed to the transition at kwarg, if any. Otherwise, default will be used.

get_modified_ object (self)
Abstract the lookup of the modified object through MODIFIED OBJECT _FIELD.

log_transition (cls, transition, from_state, to_state, modified_object, **kwargs)
Save a new transition log from the given transition name, origin state name, target state name, modified
object and extra fields.

class django_xworkflows.models.GenericTransitionLog (BaseTransitionLog)
An extended version of BaseTransitionLog uses a GenericForeignKey to store the modified object.

content_type
A foreign key to the Content Type of the modified object

content_id
The primary key of the modified object

3.1. Library internals 9

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.DateTimeField
http://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType

django-xworkflows Documentation, Release 0.8.1

modified_object
The GenericForeignKey pointing to the modified object.

class django_xworkflows.models.BaseLastTransitionLog (BaseTransitionLog)
This alternate Base TransitionLog hasbeen tuned to store only the last transition log for an object, typically
with a OneToOneField.

It handles update or creation on its own.

class django_xworkflows.models.GenericLastTransitionLog (BaseLastTransitionLog)
This class is to BaselLastTransitionLog what GenericTransitionLog 1S to
BaseTransitionLog. It holds the modified object through a GenericForeignKey, with the
adequate unique_together setting.

Here is an example of a custom TransitionLog model:

Note that we inherit from BaseTransitionLog, not GenericTransitionLog.
class MyDocumentTransitionLog (django_xworkflows.models.BaseTransitionLog) :

This is where we'll store the modified object
document = models.ForeignKey (Document)

Extra data to keep about transitions

user = models.ForeignKey (auth_models.User, blank=True, null=True)
client = models.ForeignKey (api_models.Client, blank=True, null=True)
source_ip = models.CharField(max_length=24, blank=True)

Set the name of the field where the modified object goes
MODIFIED_OBJECT_FIELD = 'document'

Define extra logging attributes
EXTRA_LOG_ATTRIBUTES = (

('user', 'user', None),
('client', 'api_client', None), # Transitions are called with 'api_client' kwaz
('source_ip', 'ip', '"), # Transitions are called with 'ip' kwarg

)

An example TransitionLog model is available in the django_xworkflows.xworkflow_log appli-
cation. Including it to settings.INSTALLED_APPS will enable database logging of transitions for all
WorkflowEnabled subclasses.

class django_xworkflows.xworkflow_log.models.TransitionLog (GenericTransitionLog)
This specific GenericTransitionLog also stores the user responsible for the transition, if provided.

The exact Model to use for that foreign key can be set in the XWORKFLOWS_USER_MODEL django setting
(defaults to " auth.User’, whichuses django.contrib.auth.models.User).

3.1.4 Internals

Note: These classes are private API.

class django_xworkflows.models.WorkflowEnabledMeta (xworkflows.base. WorkflowEnabledMeta)
This metaclass is responsible for parsing a class definition, detecting all StateField and collecting/defining
the associated Transactional ImplementationWrapper.

_find workflows (mcs, attrs)
Collect all StateField from the given attrs (the default version collects Workflow subclasses
instead)

10 Chapter 3. Contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.OneToOneField
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model
http://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.models.User

django-xworkflows Documentation, Release 0.8.1

_add_work£flow (mcs, field_name, state_field, attrs)
Perform necessay actions to register the Workflow storedina StateField defined at field_name
into the given attributes dict.

It differs from the base implementation which adds a StateProperty instead of keeping the
StateField.

Parameters
e field name (str) — The name of the attribute at which the StateField was defined
* state_field(StateField)—The StateField wrapping the Workflow

* attrs (dict) — The attributes dictionary to update.

3.2 ChangelLog

3.2.1 0.8.1 (30/11/2012)
Bugfix:

e #7: allow more than one GenericTransitionLog in the same project.
3.2.2 0.8.0 (12/10/2012)

New:

e Provide a base BaseLastTransitionLog and a GenericLastTransitionLog, useful for storing
only the last transition log for a given model.

3.2.3 0.7.1 (10/09/2012)
Bugfix:

e Usedjango.utils.timezone.now () instead of datetime.datetime.now () with Django >=1.4

3.2.4 0.7.0 (17/08/2012)

New:
e Provide a base BaseTransitionLog without GenericForeignKey.
* Ease specification of transition kwargs to store in custom TransitionLog classes

* Allow settings 1og_model_class explicitly (thus bypassing the lookup performed by 1og model).

3.2.5 0.6.0 (02/08/2012)

New:
 Enable support for XWorkflows 0.4.0

3.2. ChangelLog 11

http://pypi.python.org/pypi/xworkflows/0.4.0/

django-xworkflows Documentation, Release 0.8.1

3.2.6 0.5.0 (14/07/2012)

New:
¢ Add rebuild_transitionlog_states management command to refill from stateand to_state.

¢ Add indexes on various d jango_xworkflows.models.BaseTransitionLog fields

Bugfix:

* Fix django_xworkflows.models.WorkflowEnabled inheritance
3.2.7 0.4.5 (12/06/2012)
Bugfix:

e Don’t default to TransactionalImplementationWrapper when using a
django_xworkflows.models.Workflow.

3.2.8 0.4.4 (29/05/2012)
Bugfix:
* Serialize unicode of xworkflows.base.State.title in south ORM freezing.
3.2.9 0.4.3 (29/05/2012)
Bugfix:
¢ Include migrations in package
3.2.10 0.4.2 (29/05/2012)
Bugfix:
* Fix log=False/save=False when calling transitions
3.2.11 0.4.1 (29/05/2012)
Bugfix:

* Avoid circular import issues when resolving 1og_model to aModel

* Log source and target state names in BaseTransitionLog

3.2.12 0.4.0 (29/04/2012)

New:
* Improve south support (

* Run transition implementations in a database transaction

12 Chapter 3. Contents

http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model

django-xworkflows Documentation, Release 0.8.1

3.2.13 0.3.1 (15/04/2012)

New:
¢ Introduce StateField for adding a Work f1ow to a model

* Adapt to xworkflows-0.3.0

3.2. Changelog 13

django-xworkflows Documentation, Release 0.8.1

14 Chapter 3. Contents

CHAPTER 4

Resources

Package on PyPI: http://pypi.python.org/pypi/django-xworkflows

Repository and issues on GitHub: http://github.com/rbarrois/django_xworkflows
Doc on http://readthedocs.org/docs/django-xworkflows/

XWorkflows on GitHub: http://github.com/rbarrois/xworkflows

XWorkflows doc on http://readthedocs.org/docs/xworkflows/

15

http://pypi.python.org/pypi/django-xworkflows
http://github.com/rbarrois/django_xworkflows
http://readthedocs.org/docs/django-xworkflows/
http://github.com/rbarrois/xworkflows
http://readthedocs.org/docs/xworkflows/

django-xworkflows Documentation, Release 0.8.1

16 Chapter 4. Resources

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

17

django-xworkflows Documentation, Release 0.8.1

18 Chapter 5. Indices and tables

Python Module Index

d

django_xworkflows.models, 7
django_xworkflows.xworkflow_log.models,
10

19

django-xworkflows Documentation, Release 0.8.1

20 Python Module Index

Index

Symbols G

_add_workflow() (django_xworkflows.models. WorkflowEndbtedMelast TransitionLog (class in
method), 10 django_xworkflows.models), 10
_find_workflows() (django_xworkflows.models. WorkflowErabhedEtansitionLog (class in
method), 10 django_xworkflows.models), 9
_get_FIELD_display() (django_xworkflows.models. WorkflogeEmblidied_object() (django_xworkflows.models.BaseTransitionLog
method), 8 method), 9
B L
BaseLastTransitionLog (class in log_model (django_xworkflows.models. Workflow
django_xworkflows.models), 10 attribute), 8
BaseTransitionLog (class in django_xworkflows.models), log_model_class (django_xworkflows.models. Workflow
9 attribute), 8
blank (django_xworkflows.models.StateField attribute), 7 log_transition() (django_xworkflows.models.BaseTransitionLog
method), 9
C log_transition() (django_xworkflows.models. Workflow
choices (django_xworkflows.models.StateField attribute), method), 8
7
content_id (django_xworkflows.models.GenericTransitionL
attribute), 9 max_length (django_xworkflows.models.StateField at-
content_type (django_xworkflows.models.GenericTransitionLog tribute), 7
attribute), 9 modified_object (django_xworkflows.models.GenericTransitionLog
attribute), 9
D MODIFIED_OBJECT_FIELD
db_log() (django_xworkflows.models. Workflow (django_xworkflows.models.BaseTransitionLog
method), 8 attribute), 9
default (django_xworkflows.models.StateField attribute), N
7
django_xworkflows.models (module), 7 null (django_xworkflows.models.StateField attribute), 7

django_xworkflows.xworkflow_log.models (module), 10

E south_field_triple() (django_xworkflows.models.StateField

EXTRA_LOG_ATTRIBUTES method), 7
(django_xworkflows.models.BaseTransitionLog StateField (class in django_xworkflows.models), 7

attribute), 9
T

timestam ango_xworkflows.models.BaseTransitionLo
F { p (djang Kl dels.BaseTransitionLog
from_state (django_xworkflows.models.BaseTransitionL.og attribute), 9

attribute), 9 to_state (django_xworkflows.models.BaseTransitionLog

attribute), 9

21

django-xworkflows Documentation, Release 0.8.1

TransactionallmplementationWrapper (class in
django_xworkflows.models), 8

transition (django_xworkflows.models.BaseTransitionLog
attribute), 9

TransitionLog (class in
django_xworkflows.xworkflow_log.models),
10

W

Workflow (class in django_xworkflows.models), 8
workflow (django_xworkflows.models.StateField at-

tribute), 7

WorkflowEnabled (class in django_xworkflows.models),
7

WorkflowEnabledMeta (class in

django_xworkflows.models), 10

22

Index

	Getting started
	Integration with django
	Contents
	Library internals
	ChangeLog

	Resources
	Indices and tables
	Python Module Index

